Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems
نویسندگان
چکیده
We consider the solution of large linear systems of equations that arise from the discretization of ill-posed problems. The matrix has a Kronecker product structure and the right-hand side is contaminated by measurement error. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel and in image restoration problems. Regularization methods, such as Tikhonov regularization, have to be employed to reduce the propagation of the error in the right-hand side into the computed solution. We investigate the use of the global Golub–Kahan bidiagonalization method to reduce the given large problem to a small one. The small problem is solved by employing Tikhonov regularization. A regularization parameter determines the amount of regularization. The connection between global Golub–Kahan bidiagonalization and Gauss-type quadrature rules is exploited to inexpensively compute bounds that are useful for determining the regularization Email addresses: [email protected] (A. H. Bentbib), [email protected] (M. El Guide), [email protected] (K. Jbilou), [email protected] (L. Reichel) Preprint submitted to Journal of Computational and Applied Mathematics (JCAM)March 17, 2017 parameter by the discrepancy principle.
منابع مشابه
A Golub-Kahan-Type Reduction Method for Matrix Pairs
We describe a novel method for reducing a pair of large matrices {A,B} to a pair of small matrices {H,K}. The method is an extension of Golub–Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large linear discrete ill-posed problems are described. In these problems the matrix A represents a disc...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملOn a generalization of Regińska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization
A crucial problem concerning Tikhonov regularization is the proper choice of the regularization parameter. This paper deals with a generalization of a parameter choice rule due to Regińska (1996) [31], analyzed and algorithmically realized through a fast fixed-point method in Bazán (2008) [3], which results in a fixed-point method for multi-parameter Tikhonov regularization called MFP. Like the...
متن کاملAn Iterative Method for Tikhonov Regularization with a General Linear Regularization Operator
Abstract. Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan bidiagonalization, for solving large-scale Tikhonov minimization problems with a linear regularizat...
متن کاملTikhonov Regularization with a Solution Constraint
Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a modification of a numerical method proposed by Golub and von Matt for quadratically constrained least-squares problems and applies it to Tikhonov regularization of large-scale linear discrete ill-posed problems. The method is based on partial Lanczos bidiagonalization and Ga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 322 شماره
صفحات -
تاریخ انتشار 2017